Long time behaviour of the discrete volume preserving mean curvature flow in the flat torus

نویسندگان

چکیده

We show that the discrete approximate volume preserving mean curvature flow in flat torus $$\mathbb {T}^N$$ starting near a strictly stable critical set E of perimeter converges long time to translate exponentially fast. As an intermediate result we establish new quantitative estimate Alexandrov type for periodic constant hypersurfaces. Finally, two dimensional case complete characterization behaviour with arbitrary initial sets finite is provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Volume Preserving Mean Curvature Flow near Spheres

By means of a center manifold analysis we investigate the averaged mean curvature flow near spheres. In particular, we show that there exist global solutions to this flow starting from non-convex initial hypersurfaces.

متن کامل

Motion by volume preserving mean curvature flow near cylinders

We investigate the volume preserving mean curvature flow with Neumann boundary condition for hypersurfaces that are graphs over a cylinder. Through a center manifold analysis we find that initial hypersurfaces sufficiently close to a cylinder of large enough radius, have a flow that exists for all time and converges exponentially fast to a cylinder. In particular, we show that there exist globa...

متن کامل

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

The volume preserving crystalline mean curvature flow of convex sets in R

We prove the existence of a volume preserving crystalline mean curvature flat flow starting from a compact convex set C ⊂ R and its convergence, modulo a time-dependent translation, to a Wulff shape with the corresponding volume. We also prove that if C satisfies an interior ball condition (the ball being the Wulff shape), then the evolving convex set satisfies a similar condition for some time...

متن کامل

Self-intersections for the Surface Diffusion and the Volume-preserving Mean Curvature Flow

We prove that the surface-diffusion flow and the volumepreserving mean curvature flow can drive embedded hypersurfaces to self-intersections.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2023

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-023-02439-0